

Statement of Verification

BREG EN EPD No.: 000600

Issue 01

This is to verify that the

Environmental Product Declaration provided by:

Jiangyin Fasten Steel Products Co., Ltd

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for:

High tensile prestressing steel strand for the prestressing of concrete (Primary production route - Iron ore)

Company Address

Jiangyin Fasten Steel Products Co., Ltd No. 3456 Zhencheng Road Jiangyin Jiangsu China

Signed for BRE Global Ltd

13 June 2024

Date of First Issue

Emma Baker

Operator

13 June 2024

Date of this Issue

12 June 2027

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit $\underline{www.greenbooklive.com/check} \ or \ contact \ us.$

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000600

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.							
Commissioner of LCA study	LCA consultant/Tool							
CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK www.carescertification.com	CARES EPD Tool SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park Gallows Hill, Warwick Warwickshire CV34 6UW www.sphera.com							
Declared/Functional Unit	Applicability/Coverage							
1 tonne of high tensile prestressing steel strand for the prestressing of concrete manufactured by the primary (iron ore-based) production route as used within concrete structures for a commercial building.	Manufacturer-specific product.							
EPD Type	Background database							
Cradle to Gate with Module C and D and Options	GaBi							
Demonstration of Verification								
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010 ⊠ External							

a: Product category rules b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

(Where appropriate b)Third party verifier: Pat Hermon

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

Product			Const	ruction	Rel	Use stage Related to the building fabric Related to the building			End-of-life				Benefits and loads beyond the system boundary			
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	V	V	\square	\square	\square	\square	V	V	\square	\square	\square	$\overline{\mathbf{A}}$	V	\square	V	\square

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Jiangyin Fasten Steel Products Co., Ltd. (member of CARES)

No. 3456 Zhencheng Road Jiangyin Jiangsu China

Construction Product:

Product Description

High tensile prestressed steel strand for prestressed concrete is obtained by winding multiple wires to form the strand in various sizes (according to the product standards listed in the references section of this EPD). Wires used for the manufacturing of the strand are obtained by cold drawing of high carbon steel feedstock coils produced by hot rolling of continuously cast steel billets obtained from the blast furnace/basic oxygen furnace production route. High tensile prestressed steel strand for prestressed concrete is used to provide tensile strength in reinforced concrete structural elements.

The declared unit is 1 tonne of high tensile prestressed steel strand for prestressed concrete covering high tensile prestressed steel strand as used within concrete structures for a commercial building.

Technical Information

Property	Value, Unit
Production route	EAF
Density	7.81 kg/dm ³
Modulus of elasticity	195 GPa (Strand)
Characteristic Value of 0.1% Proof Force Fp _{0.1} (as per BS 5896:2012; value depending on steel name and size of strand)	62.2 to 334 kN (Strand)
Nominal Tensile strength (as per BS 5896:2012; value depending on steel name and size of strand)	1670 to 1860 MPa
Characteristic Value of Maximum Force Fm	92 to 379 kN (Strand)
Agt (total minimum % elongation at maximum force as per BS 5896:2012) (with Lo ≥ 500mm for Strand)	3.5 %
Maximum relaxation at 1000 h for initial force corresponding to 70% (as per BS 5896:2012)	2.5%
Recycled content (as per ISO 14021:2016/Amd:2021) (CARES BF – BOF manufacturing route average)	23.0 %

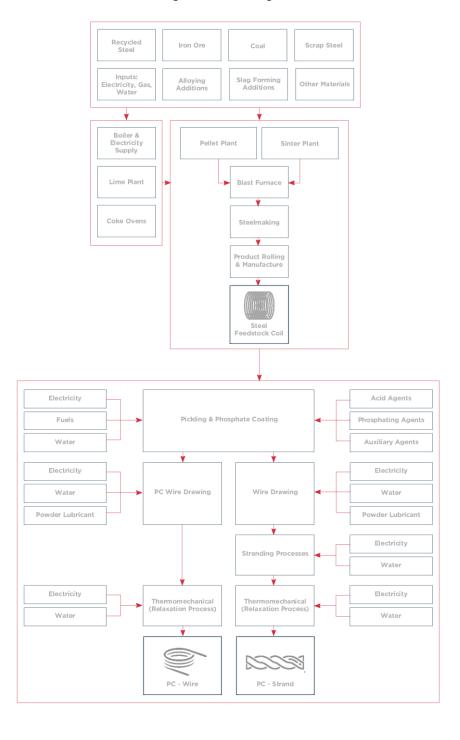
Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3

Manufacturing Process

Hot metal (molten iron) obtained from reducing ferrous rich materials (sinter, iron ore, pellets) in Blast Furnace is converted into steel by Basic Oxygen Furnace in which the carbon content of the hot metal is reduced. This is then refined in secondary steel making steps to remove impurities and alloying additions can be added to give the required properties. Molten steel is then cast into steel billets before being sent to the rolling mill where they are rolled to the required dimensions for the finished coils of the high carbon steel wire rods.

High carbon steel wire rods are cold drawn into required dimensions for the semi-finished wires, which are then twined to form steel strand for the prestressing of concrete in various sizes (according to the product standards listed in the references section of this EPD).


The products are packaged by binding with steel straps, both the steel ties and products do not include any biogenic materials.

Wrapping paper and wooden wedge that contain biogenic material are used for the packaging and handling of the final products. Their total mass is 0.25% of the total mass of the product but less than 1%, thus their biogenic carbon is not considered in this declaration.

Process flow diagram

Integrated steelmaking route

Construction Installation

Processing and proper use of high tensile steel strand products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of high tensile steel strand products the usual requirement for the special care for securing loads is to be observed.

Use Information

The composition of the high tensile steel strand products does not change during use.

High tensile steel strand products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the high tensile steel strand products itself.

End of Life

High tensile steel strand products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for high tensile steel strand products.

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of steel product covering high tensile prestressed steel strand manufactured by the Primary (Iron ore) production route as used within concrete structures for a commercial building.

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with all options EPD and thus covers all modules from A1 to C4 and includes module D as well.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data for the period 01/01/2022-31/12/2022 was provided by Jiangyin Fasten Steel Products Co., Ltd. (member of CARES). Data provided covered all products manufactured at the site. High carbon steel wire rod used in the manufacturing of high tensile steel strand for the prestressing of concrete was manufactured by Jiangyin Fasten Steel Products Co., Ltd.'s suppliers.

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from LCA FE (GaBi) Dataset Documentation (Sphera 2023.1). Thus, consumption grid mix of China has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the LCA FE (GaBi) Dataset Documentation (Sphera 2023.1). The primary data collection was thorough, considering all relevant flows and these data have been verified by CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness : Good
Technical Representativeness : Very good
Time Representativeness : Good

Allocation: Mill scale is produced as co-products from the high strength steel wire and strand manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from mill scale is 0.14%, which is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Specific information on allocation within the background data is given in the LCA FE (GaBi) Dataset Documentation (Sphera 2023.1).

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel strap used for packing the product is less than 1 % of the total mass of the product.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

raiailleteis u	escribing enviro					-111			
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwate r
			kg CO ₂ eq	kg CO₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CFC11 eq	mol H ⁺ eq	kg (PO ₄) eq
	Raw material supply	A1	2.36E+03	2.35E+03	1.30	0.827	1.89E-09	6.27	2.01E-03
December 1 at a ma	Transport	A2	5.52	5.55	-0.075	0.049	4.75E-13	0.023	1.93E-05
Product stage	Manufacturing	А3	258	257	-0.087	0.154	1.11E-09	0.877	1.28E-04
	Total (of product stage)	A1-3	2.62E+03	2.61E+03	1.139	1.030	3.00E-09	7.17	2.16E-03
Construction	Transport	A4	20.7	20.8	-0.290	0.190	1.8E-12	0.064	7.48E-05
process stage	Construction	A5	53.4	53.4	-0.080	0.029	6.09E-11	0.148	4.74E-05
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0	0
	Operational water use	В7	0	0	0	0	0	0	0
%92 Recycling / %8 Landfill Scenario									
End of life	Deconstruction, demolition	C1	2.15	2.15	2.65E-03	4.06E-05	1.64E-13	0.003	4.12E-0
	Transport	C2	41.4	41.9	-0.898	0.407	4.04E-12	0.193	1.61E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.17	1.2	-0.040	0.004	3.05E-12	0.009	2.42E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	- 1.51E+03	- 1.52E+03	3.14	-0.780	4.25E-09	-3.68	-2.04E-0
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.06E-05	1.64E-13	0.003	4.12E-07
End of life	Transport	C2	1.89	1.92	-0.044	0.020	1.88E-13	0.007	7.83E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.6	15.0	-0.499	0.047	3.82E-11	0.107	3.02E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	368	368	-0.54	0.002	-1.28E-09	0.569	-6.47E-0
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.06E-05	1.64E-13	0.003	4.12E-07
End of life	Transport	C2	44.8	45.3	-0.973	0.440	4.37E-12	0.209	1.74E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	- 1.68E+03	- 1.68E+03	3.46	-0.848	4.73E-09	-4.04	-2.16E-0

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters of	describing enviro	nmen	tal impac	ts					
			EP- marine	EP- terrestri al	POCP	ADP- mineral &metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease incidend e
	Raw material supply	A1	0.009	14.4	4.54	9.16E-05	2.04E+04	150	8.45E-05
	Transport	A2	0.009	0.100	0.019	3.43E-07	74.1	0.061	2.01E-07
Product stage	Manufacturing	А3	0.191	2.08	0.566	1.08E-05	2.73E+03	68.6	1.20E-0
	Total (of product stage)	A1-3	0.209	16.6	5.12	1.03E-04	2.32E+04	2.19E+0 2	9.67E-0
Construction	Transport	A4	0.029	0.328	0.058	1.32E-06	279	0.237	3.78E-0
process stage	Construction	A5	0.033	0.355	0.107	2.12E-06	481	4.41	1.98E-0
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
%92 Recycling / %	%8 Landfill Scenario								
End of life	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005	1.88E-0
	Transport	C2	0.091	1.01	0.195	2.86E-06	633	0.511	1.52E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.002	0.024	0.007	5.54E-08	16.0	0.132	1.05E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.842	-9.12	-2.79	-1.14E-04	- 1.15E+04	-48.0	-5.66E-0
100% Lanfill Scer	nario								
	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005	1.88E-0
End of life	Transport	C2	0.003	0.036	0.006	1.38E-07	29.2	0.025	3.65E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.303	0.083	6.92E-07	200	1.65	1.31E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.176	1.91	0.604	-9.43E-05	2.40E+03	-21.2	5.42E-0
100% Recycling S	Scenario								
	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005	1.88E-0
End of life	Transport	C2	0.098	1.10	0.212	3.10E-06	685	0.553	1.65E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.931	-10.1	-3.08	-1.16E-04	- 1.27E+04	-50.4	-6.20E-0

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

	escribing enviro						ugg. ugu.uy
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	10.1	2.01E-03	2.98E-06	2.79E-05	1.25E+03
5	Transport	A2	0.014	1.93E-05	1.05E-09	6.50E-08	30.0
Product stage	Manufacturing	A3	3.88	1.28E-04	5.12E-08	1.51E-06	325
	Total (of product stage)	A1-3	14.0	2.16E-03	3.03E-06	2.95E-05	1.61E+03
Construction	Transport	A4	0.052	7.48E-05	3.96E-09	2.47E-07	116
process stage	Construction	A5	0.298	4.74E-05	6.11E-08	6.17E-07	42.8
	Use	B1	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0
	Repair	В3	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0
_	Refurbishment	B5	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0
%92 Recycling / %8	3 Landfill Scenario						
	Deconstruction, demolition	C1	0.005	4.12E-07	4.86E-10	1.52E-08	0.095
End of life	Transport	C2	0.117	1.61E-04	8.94E-09	5.22E-07	249
Life of the	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.021	2.42E-06	1.34E-09	1.48E-07	3.89
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	20.5	-2.04E-04	-3.24E-06	-9.15E-06	896
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0.005	4.12E-07	4.86E-10	1.52E-08	0.095
End of life	Transport	C2	0.005	7.83E-06	4.14E-10	2.45E-08	12.2
2.10 00	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.263	3.02E-05	1.68E-08	1.85E-06	48.6
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.90	-6.47E-05	-3.34E-07	2.09E-06	-416
100% Recycling Sc	enario						
	Deconstruction, demolition	C1	0.005	4.12E-07	4.86E-10	1.52E-08	0.095
End of life	Transport	C2	0.127	1.74E-04	9.68E-09	5.65E-07	270
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	22.8	-2.16E-04	-3.49E-06	-1.01E-05	1.01E+03

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters (describing resou	rce u	se, primar	y energy				
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	1.68E+03	0	1.68E+03	2.06E+04	0	2.06E+04
	Transport	A2	5.10	0	5.10	74.3	0	74.3
Product stage	Manufacturing	А3	709	0	709	2.73E+03	0	2.73E+03
	Total (of product stage)	A1-3	2.39E+03	0	2.39E+03	2.34E+04	0	2.34E+04
Construction	Transport	A4	19.7	0	19.7	280	0	280
process stage	Construction	A5	50.5	0	50.5	485	0	485
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
Ü	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / 9	%8 Landfill Scenario							
End of Wo	Deconstruction,	C1	0.125	0	0.125	28.4	0	28.4
	demolition Transport	C2	42.4	0	42.4	634	0	634
End of life	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	2.61	0	2.61	16.0	0	16
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	1.63E+03	0	1.63E+03	-1.17E+04	0	-1.17E+0
100% Landfill Sce	enario							
	Deconstruction,	C1	0.125	0	0.125	28.4	0	28.4
End of Pt.	demolition Transport	C2	2.07	0	2.07	29.3	0	29.3
End of life	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	32.6	0	32.6	200	0	200
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-690	0	-690	2.44E+03	0	2.44E+0
100% Recycling S	Scenario							
	Deconstruction, demolition	C1	0.125	0	0.125	28.4	0	28.4
End of life	Transport	C2	45.9	0	45.9	687	0	687
LING OF ING	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	1.83E+03	0	1.83E+03	-1.29E+04	0	-1.29E+0

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters desc	cribing resource us	se, sec	condary ma	terials and fuels, (use of water	
			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m³
	Raw material supply	A1	0	0	0	150
Due de et et e e e	Transport	A2	0	0	0	0.061
Product stage	Manufacturing	А3	-205	0	0	68.6
	Total (of product stage)	A1-3	-205	0	0	2.19E+02
Construction	Transport	A4	0	0	0	0.237
process stage	Construction	A5	0	0	0	4.41
	Use	B1	0	0	0	0
	Maintenance	B2	0	0	0	0
	Repair	В3	0	0	0	0
Use stage	Replacement	B4	0	0	0	0
	Refurbishment	B5	0	0	0	0
	Operational energy use	В6	0	0	0	0
	Operational water use	B7	0	0	0	0
%92 Recycling / %8	Landfill Scenario	-				
End of life	Deconstruction, demolition	C1	0	0	0	0.005
	Transport	C2	0	0	0	0.511
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.132
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-715	0	0	-48.0
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.025
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	1.65
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	205	0	0	-21.2
100% Recycling Sce	nario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.553
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-795	0	0	-50.4

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environme	ental information d	escrib	oing waste categori	es	
			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	-2.70E-07	35.8	0.108
Doe doest at a ma	Transport	A2	2.74E-10	0.011	9.58E-05
Product stage	Manufacturing	А3	-1.15E-07	1.37	0.062
	Total (of product stage)	A1-3	-3.85E-07	37.2	0.170
Construction	Transport	A4	1.04E-09	0.040	3.62E-04
process stage	Construction	A5	-2.51E-09	2.35	0.004
	Use	B1	0	0	0
	Maintenance	B2	0	0	0
	Repair	В3	0	0	0
Use stage	Replacement	B4	0	0	0
_	Refurbishment	B5	0	0	0
	Operational energy use	B6	0	0	0
	Operational water use	B7	0	0	0
%92 Recycling / %8 I	%92 Recycling / %8 Landfill Scenario				
End of life	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
	Transport	C2	2.30E-09	0.090	8.15E-04
	Waste processing	C3	0	0	0
	Disposal	C4	3.49E-10	80.1	1.82E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.008	-20.8	0.185
100% Landfill Scenar	rio				
	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
End of life	Transport	C2	1.08E-10	0.004	3.78E-05
	Waste processing	C3	0	0	0
	Disposal	C4	4.36E-09	1.00E+03	0.002
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.008	7.20	-0.063
100% Recycling Scen	nario				
	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
End of life	Transport	C2	2.49E-09	0.097	8.82E-04
	Waste processing	C3	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.008	-23.2	0.206

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0	0	0	0	0	0
Due di int ete me	Transport	A2	0	0	0	0	0	0
Product stage	Manufacturing	А3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction	Transport	A4	0	0	0	0	0	0
process stage	Construction	A5	0	0	0	0	0	0
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	ВЗ	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8	Landfill Scenario							
End of life	Deconstruction, demolition	C1	0	-920	0	0	0	0
	Transport	C2	0	0	0	0	0	0
ind of file	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scena	rio							
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Sce	nario							
	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and addi	tional technical information								
Scenario	Parameter	Units	Results						
	On leaving the manufacturing factory the high-tensile prestressed steel str transported to the construction site, including provision of all materials and transport distance to site is assumed to be 350 km. Only the one-way distance is considered as it is assumed that the logistics optimise their distribution and not return empty in modules beyond A3.	products.	Road						
A4 – Transport to the	Truck trailer - Fuel	litre/km	1.56						
building site	Distance	km	350						
	Capacity utilisation (incl. empty returns)	%	85						
	Bulk density of transported products	kg/m³	7810						
A5 – Installation in	Installation in the building; including provision of all materials, products, and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. Installation of the product into the building is assumed to result in 10% wastage (determined based on typical installation losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assumed that fabrication requires 15.34 kWh/tonne finished product, and that there is a 2% wastage associated with this process.								
the building	Ancillary materials for installation - Losses per tonne of construction steel forms	%	2						
	Energy Use - Energy per tonne required for installation into building	kWh	15.34						
	Waste materials from installation wastage	%	10						
B2 – Maintenance	No maintenance required								
B3 – Repair	No repair process required								
B4 – Replacement	No replacement considerations required								
B5 – Refurbishment	No refurbishment process required								
Reference service life	High-tensile prestressed steel strand products for the prestressing of conc main building structure so the reference service life will equal the lifetime of Concrete Society follows the definitions provided in BS EN 1990, which sp structures and other common structures" as having a lifetime of 50 years (Society, n.d.; BSI, 2005). On this basis, the RSL for this EPD is assumed to	of the buildi ecifies "bu The Concr	ing. The ilding ete						
B6 – Use of energy; B7 – Use of water	No water or energy required during use stage related to the operation of the	ne building							
C1 to C4 End of life,	The end-of-life stage starts when the construction product is replaced, disr deconstructed from the building or construction works and does not provid function. The recovered steel is transported for recycling while a small portunrecoverable and remains in the rubble which is sent to landfill. 92% of the assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTIO Once steel scrap is generated through the deconstruction activities on the considered to have reached the "end of waste" state. No further processing are no impacts associated with this module. Hence no impacts are reported.	e any furth tion is assu le reinforci N.INFO 20 demolition g is require	er umed to be ng steel is 112]. site it is ed so there						
	Waste for recycling - Recovered steel from crushed concrete	%	92						

Scenarios and additional technical information			
Scenario	Parameter	Units	Results
C1 to C4 End of life,	Waste for energy recovery - Energy recovery is not considered for this study as most end of life steel scrap is recycled, while the remainder is landfilled	-	-
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	8
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56
	Transport to waste processing by Truck – Distance	km	463
	Transport to waste processing by Truck – Capacity utilisation	%	85
	Transport to waste processing by Truck – Density of Product	kg/m³	7810
	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041
	Transport to waste processing by Container ship - Distance	km	158
	Transport to waste processing by Container ship – Capacity utilisation	%	50
	Transport to waste processing by Container ship – Density of Product	kg/m³	7810
Module D	It is assumed that 95% of the steel used in the structure is recovered for recycling, while the remainder is landfilled. Module D accounts for the environmental benefits and loads resulting from net steel scrap that is used for recycling at end of life. The balance between total scrap arisings recycled from installation and end of life and scrap consumed by the manufacturing process (internally sourced scrap is not included in this calculation). These benefits and loads are calculated by including the burdens of recycling and the benefit of avoided primary production. A large amount of net scrap is generated over the life cycle as the BF/BOF production route is primarily from virgin sources and there is a very high end of life recycling rate for this product. Benefits and loads associated with this scrap are calculated by including the burdens of		
	recycling process and accounting for the avoided primary production. As a result, module D reports the credits associated with the scrap output. The resulting scrap credit/burden is calculated based on the global "value of scrap" approach (/worldsteel 2011).		
	Recycled Content	kg	230
	Re-used Content	kg	0
	Recovered for recycling	kg	920
	Recovered for re-use	kg	0
	Recovered for energy	kg	0

Summary, comments and additional information

Interpretation

Primary material (iron ore) based high-tensile prestressed steel wire and strand products for the prestressing of concrete of Jiangyin Fasten Steel Products Co., Ltd. is made via blast furnace/basic oxygen furnace production route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 95.67% overall life cycle impacts for this category. The most significant contributions to production phase impacts are: the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/preproducts as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D is almost of the same magnitude as the production phase impacts.

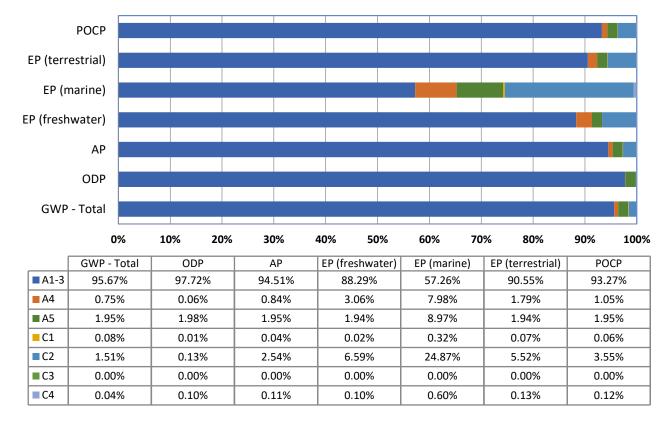


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the high-tensile prestressed steel strand products for the prestressing of concrete manufactured by primary production route (BF/BOF)

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

LCA FE (GaBi) Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen

LCA FE (GaBi) Dataset Documentation for the LCA FE Software System and Database for Life Cycle Engineering, version 2023.1, Sphera Solution GmbH, Leinfelden-Echterdingen, https://www.LCA FE (GaBi)-software.com/databases/LCA FE (GaBi)-databases/

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U.S. Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The recycling and reuse survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

CARES CARES Post Tensioning Systems for Concrete Structures Scheme Appendix PT8 - Quality and operations assessment schedule for high tensile steel wire and strand for the prestressing of concrete - https://www.carescertification.com/certified-companies/search - Certificate number of conformance to BS 5896 at the time of LCA study – 220806

BS 5896:2012 High tensile steel wire and strand for the prestressing of concrete. Specification

ASTM A416/A416M-18 Standard Specification for Low-Relaxation, Seven-Wire Steel Strand for Prestressed Concrete

AS/NZS 4672.1:2007 Steel prestressing materials Part 1: General requirements

prEN 10138-2 - 2022 Prestressing steels - Part 2: Strand

GB/T 5224-2023 Steel strand for prestressed concrete

ISO 6934-1:1991 Steel for the prestressing of concrete Part 1: General requirements

ISO 6934-4:2020 Steel for the prestressing of concrete Part 4: Strand

JIS G 3536:2014 Steel wires and strands for prestressed concrete